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Reverse Indices of Derivative Network of Cellular Network Type 1
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Abstract: In order to further study the derivative network of cellular network Type 1, we studied its reversed degree-based topological
indices. Meanwhile, we computed the first and second reversed Zagreb indices, reversed modified second Zagreb index, reversed
symmetric division index, reversed Randic and inverse Randic index, reverse inverse sum index and reversed augmented Zagreb index.
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1 Background Knowledge

In mathematical chemistry, mathematical tools such as polynomials and numbers predict properties of com-
pounds without using quantum mechanics. These tools, in combination, capture information hidden in the symmetry
of molecular graphs. Topological indices are numerical parameters of a graph which characterize its topology and are
usually graph invariant. They describe the structure of molecules numerically and are used in the development of
qualitative structure activity relationships ( QSARs). Most commonly known invariants of such kinds are degree-
based topological indices. These are actually the numerical values that correlate the structure with various physical
properties, chemical reactivity and biological activities. It is an established fact that many properties such as heat of
formation, boiling point, strain energy, rigidity and fracture toughness of a molecule are strongly connected to its
graphical structure and this fact plays a synergic role in chemical graph theory.

Throughout this report, G is a connected graph, V(G) and E(G) are the vertex set and the edge set respec-
tively and d, denotes the degree of a vertex v.

"'/ and it was named path number, which is now known as

The first topological index was introduced by Wiener
Wiener index. In chemical graph theory, this is the most studied molecular topological index due to its wide appli-

cations, see for details’>*'. Randic index'*’, denoted by R_,,(G) and introduced by Milan Randic in 1975 is
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also one of the oldest topological index. The Randic index is defined as;

1
R_,(G)= —.
. uve;((;),\/ dudb
In 1998, Bollobas and Erdos'’’ proposed the generalized Randic index and has been studied extensively by
both chemist and mathematicians.
The general Randic index is defined as;
1
R,(G) = a5
ut;e%((;) (dudn>

and the inverse Randic index is defined as RR,(G)= Y, (d,d,)*. Obviously R _,,(G) is the particular case of

wekE(G)

R,(G) when a=-1/2.

Gutman and Trinajstic introduced first Zagreb index and second Zagreb index, which are defined as:
M, (G) = z (d, +d,) and M,(G) = z (d, x d,) respectively. The aim of this paper is to study reverse
wekE(G) weE(G)

indices for honey comb derived networks.

The reverse First Zagreb index is defined as;

CM,(G) = Z ¢, +c,

w e CE(G)

The reverse Second Zagreb index is defined as:

CM,(G) = Y ¢, xc,

we CE(G)

The reverse Second Modified Zagreb index is defined as:

M6 = Y

we CE(G) (Cu X Cv) '

The reverse Symmetric division index is defined as:

CSDD(G) =

{min(cu ,¢,) .\ max(c,,c,) }
w e CE(G) max(cu,c“) min(cu,,Q

The reverse Harmonic index is defined as:

CH(G)= ¥ —2

w e CE(G) Cu + cl;

The reverse Inverse Sum-Index is defined as:

cu X c?,’

CI(G) = Y

weCh(¢) Cu T €y

The reverse Augmented Zagreb Index is defined as:

3
X ¢
CA(G) = {7% }
qu;(C) C, + c, — 2
In this paper, we aim to study the above mentioned reversed degree-based indices for the Honey comb derived

network of type 1.
2 Main Results

The Honey comb derived network of type 1 is shown in Figure 1 and is denoted by HCN,.

The edge set of HCN,,, has following five subclasses:
E,(HCN,,,) ={weE(HCN,,,): d,=d,=31};
E,(HCN,,,) =lweE(HCN,,,): d,=3, d,=5};
E,(HCN,,,) =tweE(HCN,, ): d,=3, d,=6};
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E,(HCN,,) ={weE(HCN,.,,): d,=5, d,=61;
E;(HCN,,,,) ={weE(HCN,,,): d,=d, =6}.
| [ | | 2]

The maximum degree of HCN, is 6. Hence the reverse edge partition is:

CE,(HCN,,,,) =tuweE(HCN,,,,): ¢, =c, =4};
CE,(HCN,,,,) ={uweE(HCN,),): ¢, =4, ¢, =2};
CE,(HCN,,,,) ={uweE(HCN,,),): ¢, =4, ¢, =1};
CE,(HCN,,,,) ={weE(HCN,,,): ¢,= 2, ¢, =1};
CE,(HCN,,,) =|uwe E(HCN,,,,): ¢, =c,=1}.
Now, Figure 1 Honey Comb Derived
|E,(HCN,,,,) | = |CE,(HCN,,,) | =6; Network of Type 1 for n =3

|E,(HCN,,,,) | = |CE,(HCN, ) | =12(n-1);
|E,(HCN,) | = |CE,(HCN,) | =6n;
|E,(HCN,) | = |CE,(HCN,) | =18(n-1);
|E;(HCN,) | = |CE;(HCN,) | =27n* =57n +30.
For this edge partition, one can compute the following results.
Theorem 1 Let HCN, be the honey comb derived network. Then
CM,(HCN,) =54n" +12n - 18.

Proof From the reverse edge partition given above, we have

CM,(HCN,) = z (¢, +¢,)

w e CE(HCNY)

(¢, +¢,)+ Z (¢, +¢,)+ Z (¢, +c,)

w e CE (HCN}) w e CEy(HCN}) wv e CE3(HCNY)
+ Z (¢, +¢,)+ Z (¢, +¢,)
w e CE4(HCNy) uv e CEs(HCNy)

|CE,(HCN,) |(4 +4) + |CE,(HCN,) |(4 +2) + |CE,(HCN,) |(4 +1)

|CE,(HCN,) |(2 + 1) + |CE;(HCN,) |(1 +1)

(6 x8)+12(n —-1)x6+(6nx5)+18(n —1)3+(27n° —57n +30)2
=54n>+12n - 18.

Theorem 2 Let HCN, be the honey comb derived network. Then

CM, (HCN,) =27n" +99n —6.

+

Proof From the reverse edge partition given above, we have

CM,(HCN,) = Y, (¢,xc,)

uve CE(HCN})

(c,xc,) + 2 (e, xc,) + 2 (e, xc,)

we CE,(HCN,) we CEy(HCN)) we CE5(HCNY)
+ z (Cu,xcv>+ z (cuxcv>
w e CE4(HCNy) uv e CE5(HCNy)

CE,(HCN,) |(4 x4) +|CE,(HCN,) | (4 x2) + |CE,(HCN,)|(4 x1)

|CE,(HCN,) | (2 x 1) +[CES(HCN,) [ (1 x 1)

(6 x16)+12(n - 1) x8+(6n x4) +18(n —1)2 + (270> =570 +30)1
=270 +99n - 6.

Theorem 3 Let HCN, be the honey comb derived network. Then

C"M, (HCN,) = 270" ~5dn + 122

+
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Proof From the reverse edge partition given above, we have
1

wechtneny (¢, X c,)

C"M,(HCN,) =

1 1
- vk v vy
C, X €, wecky(HeN) N Cu X €0 wechs(HON) €y X €,

w e CEj(HCNy)

1 1

P G b (o)
we CE4(HCNy) * €y X C, ¢, X¢,

uve CEs(HCNy)

= | CE, (HCN,) \(4 l4)+\CE2(HCN1) \(4 12)+\CE3(HCN1) \(411)
+ | CB (HON) |5 7) L eBscren) (1)

= (6 x]1—6)+12(n—1)X%+(6nxi—)+18(n—1)%+(27n2 ~ 570 +30)1

=27n? —54n+%.

Theorem 4 Let HCN, be the honey comb derived network. Then
193 31

CH(HCN,) =270’ 5 n+2 .
Proof From the reverse edge partition given above, we have
CH(HCN,) = 2
uueCE(ncw,)(Cu + CL»)
- () ) 2 )
uve CE(HCNy) ¢, tc, uve CEy(HCNy) ¢, te, uv e CE3( HCNy) c,t+c,

P P b

uv e CE4(HCN,)

(o+2)

uve CEs(HCNy)

= e, (HeN,) | 25)+ em,cen)) | 25) + e caen,) |(125)
+ | CE,(HCN,) | (5 2) + ] CEsCHEN,) | (+2)

2 2 2 _1 2 2 _ 2
(6x§)+12(n—1)x6+(6n><?)+18(n )5 +(270° =570 +30)

2 193 31
=27n 5" + >
Theorem 5 Let HCN, be the honey comb derived network. Then
_ 272 43
CI(HCN,) = >t o 1.

Proof From the reverse edge partition given above, we have

CI(HCN,)

we CE(HCNy) \ Cyy + c,

_ Z (Cuczv)+ z (Cucv)+ 2 (Cucb)
we CE (HCN)) VN C, + C, we CE,(HCN) N €, + €,/ wecis(HeNy) N €, T €,

Cc C, c,C,
LR
we CEg(HCN) N C, + €7 wecks(HeN) N C, T €,
_ 4 x4 4 x2 4 x1
= [CB (HCN,) |37 )+ 1B (HON,) (375 + [ e (ren) (57)

2 x1
2 +1

lxl)

+ | CE,(HCN,) | ol

)+ e, cren,) |
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16 8 4 2 2 1
(6x§)+12(n—1)x6 +(6nx§)+18(n D5 + (270" =57 +30)

L 8,

Theorem 6 Let HCN, be the honey comb derived network. Then

CSDD (HCN, ) = 54n° —277n -3,

Proof From the reverse edge partition given above, we have

CSDD(HCN,) = Y {min(c,,,b) max(cu,,)}

uve CE(HCNy) max(cu ’ 1) min(cu’ 1 )

- {mln(cu 9(’v> maX(Cu, 1)}_'_ {min((’u?cl) max(cu ’cv)}
,“E([vl(H(\l) max(c,,c,) min(cu,cl) lwe(l‘z(H(’V]) max(c,,c,) min(c,,c,)
N {mln(cu,q) max (e, , L>}+ {min<cu, ¢,) max(cu,q)}
meCE3<HcV1> max(c,,c,)  min(e,,¢,)d wecig Hcm max(c,,c,)  min(c,,c,)
. {mm(cu, o), max(e,,c J}
uue(,E;(]IU\l) maX<0u, c, min(cu’ ¢,
_ m1n(4,4) max(4,4) N min(4,2) max(4,2)
‘CE] (HCN,) ‘{max(4,4) * min(4,4) } ‘CEZ(HCN]) ‘{max(4,2) * min(4,2) }
min(4,1) max(4,1) {min(2,l) max(2,l)}
+ + +
‘CE3<HCN1>‘{maX(4 1) +min(4,l)} | CE,(HCN,) | max(2,1)  min(2 1)
min(1,1) max(l,l)
* ‘CEs(HCNN{ «(1.1) min(l,l)}

=6(*+*)+12(n—1)x(1+%)+6n( +?)+18(n—1)x(%+%)

1

4
2 1 1

+(27n 57TL+30>X(T+T)

= san* = 2Tn -3,

Theorem 7 Let HCN, be the honey comb derived network. Then

Ty (2,8,08.5), (612,30 18
CR, (HCNy) = n + (o g+ = |n+ (g g e a0 )

Proof From the reverse edge partition given above, we have

1
CR,(HCN,) = —
w e CECHCNy) (¢, x¢,)
1 1 1
- () (o) (erxere)
we ke N (¢, X ¢,) weckyheny s (¢, X ¢,) wecicnevy N (e, X ¢,)
1
+

1
N (e
uz-gCE4(HCN])( (C,, X Cb)a) uv e CEs(HCNy) (Cu X Cv)a
1

= \CEI(HCNI)\( G x2)"

+ | CE,(HEN,) | )+ ek, o) | pe)

I
(4><4)°‘)
+ [ CECHON) | 11)) |CE,(HEN) | )

1 1 2 1
= — )+ 12 -1 — — |+ 18 -1)— 27n" =57 30) —
(6x16“)+ (n )x8a+(6nx4a)+ (n )2u+( n n+ >1“

+ n +
8(1 4(1 2[1 lLY

272 (12 6 18 57)
+ p—

6 (6 Q@@)
BT ’

— + —
le* &« 1* 2°¢
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Theorem 8 Let HCN, be the Honey comb derived network. Then
CRR,(HCN,) = (27 x1*) n” + (12 x8% +6 x4* +18 x2* =57 x1%)n
+ (6 x16% =12 x8* +30 x 1* =18 x2%).

Proof From the reverse edge partition given above, we have

CRR,(HCN,) = ¥ (c¢,x¢c)"
uwe CE(HCNy)
= (e,xe)+ 2 (e,xe)"+ X (¢, xe)"
uv e CEj(HCNy) uv e CE,(HCNy) uv e CE3( HCNy)
+ Z (¢, xc,)" + z (¢, xc,)"
uw e CE4(HCNy) w e CEs(HCNy)
= | CE,(HCN,) | (4 x4)“+ |CE,(HCN,) | (4 x2)*+ | CE,(HCN,) | (4 x 1)
+ |CE,(HCN,) |(2 x 1)+ [CE;(HCN,) | (1 x 1)*

(6 x16%) +12(n — 1) x 8%+ (6n x4*) +18(n — 1)2%+ (270 = 57n +30)1“
=(27 x 10" + (12 x 8%+ 6 x4+ 18 x2*-57 x 1“)n
+ (6 x16°-12 x8*+30 x 1*-18 x2%).

3 Conclusions

Topological indices are helpful to understand the topology of networks. In this paper, we have studied nine
reversed degree-based indices for the Honey comb derived network of type 1. To study the reversed indices for the

honey comb derived networks of type 2, type 3 and type 4 is an interesting problem.
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